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SUMMARY 

A velocity-vorticity formulation of the Navier-Stokes equations is presented as an alternative to the 
primitive variables approach. The velocity components and the vorticity are solved for in a fully coupled 
manner using a Newton method. No artificial viscosity is required in this formulation. The pressure is 
updated by a method allowing natural imposition of boundary conditions. Incompressible and subsonic 
results are presented for two-dimensional laminar internal flows up to high Reynolds numbers. 
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INTRODUCTION 

Streamfunction-vorticity formulations of the incompressible and compressible Navier-Stokes 
equations have been successfully implemented for 2D internal and external flows.'-4 However, in 
3D the boundary conditions are complex to implement, particularly for internal flows. The 
velocity-vorticity formulation has therefore become an increasingly attractive a l t e rna t i~e .~ - '~  
Fase15 appears to be among the first to consider the use of these variables for two-dimensional 
enclosed flows, while Dennis et d6 proposed a similar formulation for the three-dimensional 
Navier-Stokes equations. 

Among the advantages of the velocity-vorticity approach, one should mention: 

(1) Boundary condition implementation is simpler for second-order equations. 
(2) For incompressible flows non-inertial effects do not change the form of the  equation^.'^ 
(3) For incompressible flows the pressure does not need to be solved for as one of the variables. 

While most approaches focus on finite differences schemes and show results for incompressible 
internal l 6  the present paper proposes a finite element approach and, in addition, the 
formulation is extended to subsonic flows. The variables are solved for in a fully coupled manner 
by a Newton method, achieving very rapid convergence. The geometries analysed include a 
driven cavity, a trough and a converging-diverging nozzle. 

027  1-209 1 /90/040461-15$07.50 
0 1990 by John Wiley & Sons, Ltd. 

Received 9 February 1989 
Revised 30 June 1989 



462 G. GUEVREMONT, W. G. HABASHI AND M. M. HAFEZ 

GOVERNING EQUATIONS 

Velocit y-uorticity equations 

primitive variables (u ,  u, p )  are 
The governing equations for two-dimensional, steady, compressible flow in terms of the 

( P U ) X  + ( P O ) ,  = V . ( P V )  = 0 7 (1) 

(2)  

(3) 

R e [ p u u ,  + puu,] = - R e ( p , )  + [ 2 p ,  - f p F 7 - V l ,  + [pu ,  + p u X ] , ,  

ReCpuv, + puu,I = - R e ( p , )  + [2puy - + p v * V l ,  + by + pu,I , ,  

where Re is the Reynolds number. 

(R 3 V x V, with Q = wk in 2 D )  and the first-order continuity equation as follows: 
The velocity-vorticity system of equations is obtained by manipulating the vorticity definition 

v x R = v x ( V  x V) = V ( V * V )  - vzv 

= v - V . ( p V )  - - v . v p  - V’V (: P l )  

For two-dimensional flows the equations become 

V 2 u + w y + ( T ~ y )  U P ,  + U P  =o,  
X 

In the derivation of these equations, while it has been implicitly recognized that the gradient of 
the continuity equation is zero, the continuity equation itself is no longer part of the system. Mass 
continuity is thus accounted for only to within an arbitrary constant.I2 This problem is dealt with 
in the boundary conditions section. 

The vorticity transport equation is obtained by taking the curl of the momentum equations 
and eliminating the pressure term. After rearranging, 

where 
V 2 ( p c o )  - Re(puw, + puw, + S p )  + (SMu), + ( S P ” ) ,  = 0, 

sp = U ( P , U y  - P Y U X )  + u(P,Jy  - P y % )  Y 

(6) 

S P U  = 2(p ,u ,  - / A Y U X ) ,  S “  = 2(pxuy  - p y u , ) .  

FINITE ELEMENT FORMULATION 

Weighted residuals equations 

weight function W and integrating over the domain: 
The weighted residual form of the governing equations is obtained by multiplying each by a 
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The weak form of these equations results after integration by parts of the second-order terms: 

where Resui, ResUi and ResWi are the residuals, using values from the previous iteration. The 
contour integrals of equations (10) and (11 )  are derived in detail in the boundary conditions 
section. 

Newton-Galerkin form of the equations 

The velocity-vorticity equations are solved simultaneously by a Newton method to achie,ve 
very rapid convergence. The linearized versions of equations (lo), (1 1) and (12) are, with second- 
order terms neglected, as follows: 

where 

6 6 4 

j =  1 j =  1 j =  1 
c K4ij Avj + c KSijAuj + C KGijAoj = -Res,, , 

where 

(14) 
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where 

K s i j  = jl W,iRe[pw,Nj” + p,(u,NY + u(NY),) - p,(uxNr + u ( N ; ) , )  dA,  I 
Here Au, Av and A w  are the changes in the x-velocity, y-velocity and vorticity respectively 
between iterations. 

The weight functions W in the Galerkin weighted residual scheme are chosen to be the 
corresponding shape functions to each of the variables: 

WIi = WZi = NY, W3i = NY 

For equal degree of approximation of vorticity and derivatives of velocities, the former is 
represented by bilinear shape functions while the latter are approximated by biquadratic shape 
functions: 

A A 4 

u = N f u j ,  u = 1 N Y v j ,  w = 1 N Y w j .  
j =  1 j =  1 j =  1 

The geometry is represented by 8-node curvilinear elements. 

BOUNDARY CONDITIONS 

Inlet 

By specifying the velocity distribution at the inlet, the vorticity is also known and becomes a 
Dirichlet boundary condition at inlet nodes. 

Exit 

As noted in the derivation of the velocity equations, only the gradient of the continuity 
equation is set to zero and the continuity equation condition must therefore be explicitly imposed, 
at least at one point, to remove the arbitrariness of the solution.” In the present work this is done 
by using the continuity equation to modify the original contour integrals of equations (10) 
and (1 1). For example, in equation (10) the contour integral 
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has its compressible term modified using the continuity equation to yield 

( u x p ~ ' : , p ) d y ) = ~ W , i (  -uydx-vydy 

The contour integral of the y-velocity (equation 11)) is modified in a similar manner to yield I: wzi(U.xdy + uxdx). 

Therefore, for an exit aligned with the y-axis, i.e. dx = 0, the transverse velocity boundary 
condition ( u ,  = 0) is accounted for by dropping the contour integral of the y-velocity equa- 
tion ( I  l). The continuity equation is satisfied at the exit by evaluating the contour integral of the 
x-velocity equation (lo), - u y  dy. It is important to note that this term must be included in the 
Jacobian operating matrix of the Newton method. 

The vorticity boundary condition is accounted for by dropping the contour integral of 
equation (12), since on the exit boundary the normal derivative of the vorticity is assumed to be 
zero. 

Walls 

At walls, no-slip and no-penetration are implemented as Dirichlet boundary conditions on the 
velocity components. The vorticity, however, has no explicit wall boundary condition and its 
definition is used in the following manner at the walls: 

jk N y ( o  + uY - u,)dA = 0. 

UPDATING THE PRESSURE, DENSITY AND VISCOSITY 

Pressure 

The pressure in the incompressible formulation is not needed during the iteration process and 
is thus only solved for as a posteriori information. For subsonic flow, however, the pressure is 
needed to calculate the density and hence is an integral part of the iteration process. A Poisson 
equation whose natural boundary conditions automatically satisfy the normal momentum 
equation can be used to solve for the p r e ~ s u r e . ~ * ~  It is derived by taking the divergence of the 
momentum equations: 

V*(Vp + F) = 0, (17) 

where F, is the remainder of the x-momentum equation (2) and F, is the remainder of the 
y-momentum equation (3). The weighted residual form of the pressure equation is 

{k Wi(V-(Vp + F))dA = 0, 

Upon integration by parts, 

{L(VWi*(Vp + F))dA = Wi(Vp + F ) * n d s .  (19) 
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The contour integral contains the normal momentum equation and is simply set to zero on 
boundaries where the pressure is unknown. 

Density 

work a constant total enthalpy is assumed: 
The density is obtained from the energy equation once the pressure is known. In the present 

This is a good approximation in the absence of heat transfer. The complete energy equation can 
be solved for more general cases if needed. 

Viscosity 

A variable viscosity is obtained using Sutherland's empirical law for air:" 

T, + 110 K 

The temperature is evaluated from the pressure and density using the equation of state for a 
perfect gas. 

SOLUTION METHODOLOGY 

The solution system consists of seven equations: vorticity transport, two velocity equations, 
pressure, energy, viscosity-temperature and an equation of state. The unknowns are the two 
velocities, the vorticity, the density, the pressure, the viscosity and the temperature. 

The coupling of the density and viscosity with the velocity-vorticity equations for subsonic 
flows is not high enough to warrant the velocity-vorticity equations to be solved simultaneously 
with the remaining four equations. The coupling of the velocity and vorticity through the 
convective term is, however, very significant and the vorticity and velocities should therefore be 
solved simultaneously. The pressure is solved for from equation (19) with the updated velocities 
and vorticity. The density is calculated using the energy equation and the temperature and 
viscosity are then updated. 

To get within the radius of convergence of the Newton method, marching in Reynolds number 
may be necessary, i.e. successive solutions at increasing Re may have to be obtained. In these cases 
incompressible Stokes flow, Re = 0, can be used as the initial guess and intermediate-Re solutions 
do not have to be fully converged before stepping up Re.4 In the present work stepping up the Re 
was not found necessary and all solutions were obtained at the target Re directly. 

COMPUTATIONAL RESULTS 

Results have been obtained for laminar two-dimensional incompressible and subsonic flows. The 
cases investigated are flow in a driven cavity, over a trough and in a nozzle. 

First the driven cavity problem is tested for incompressible flow at Re = 400. Figure 1 shows 
that convergence to an L-2 residual of is attained in 11 iterations on a (15 x 15)-element 
grid. The initial guess needs about five iterations to adjust, owing to the corner separation zones, 
before quadratic convergence is attained. Figure 2 details these velocity vectors near the corner 
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Figure 2. Velocity vectors for driven cavity, Re = 400 
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separation zones. Figures 3 and 4 compare equivorticity contours and centreline velocities 
respectively with the results of a streamfunction-vorticity solution.' 

Flow over a trough is selected to test the stability of the method for high-Reynolds-number 
separated flows. The flow is fully developed at the inlet and a separation zone is formed and 
contained within the trough. For a Reynolds number of lO0o0,  convergence is attained in six 
iterations to an L-2 residual of lo-* on a 420-element grid and is shown in Figure 5. The initial 
guess is close enough to the solution to achieve quadratic convergence. The velocity vectors are 
shown in the region of the trough in Figure 6. The results are meant to be only illustrative since at 
such a Reynolds number the flow would actually be turbulent. 

For subsonic flow a converging-diverging nozzle with an inlet Mach number of 0 2  and a 
Reynolds number of 100 is tested. Convergence is attained in 12 iterations to an L-2 residual of 
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Figure 3(a). Equivorticity lines for driven cavity, velocity-vorticity, Re = 400 
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Figure 3(b). Equivorticity lines for driven cavity, streamfunction-vorticity, Re = 400 

lo-' on a 930-element grid and is compared in Figure 7 to the convergence of the incompressible 
case with the same initial guess. As expected, convergence is quadratic for the incompressible case 
and drops to linear for the subsonic case, since density is lagged iteration-wise. Despite this, the 
convergence is quite fast, justifying the solution strategy chosen for subsonic flows, at least for this 
test case. Figure 8(a) shows the streamlines in the nozzle region for incompressible flow and 
Figure 8(b) shows details in the recirculation zone after the nozzle. Figure 9 compares the 
incompressible and subsonic results. The maximum Mach number in the subsonic flow case was 
0.5 and the results indicate that the levels of velocity and vorticity are higher than the 
corresponding incompressible case. 
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Figure 4. Centreline velocities for driven cavity, Re = 400 
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Figure 5 .  Convergence history for flow in a trough, Re = 1OOOO 



FE SOLUTION OF THE NAVIER-STOKES EQUATIONS 

Figure 6. Velocity vectors for trough, Re = 10000 
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Figure 7. Convergence history for flow in a nozzle, Re = 100 
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Figure 8(a). Streamlines for nozzle, Re = 100 
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Figure 8(b). Streamline details in nozzle recirculation zone, Re = 100 
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Figure 9. Wall vorticity profiles for nozzle, Re = 100 

CONCLUSIONS 

A finite element method has been presented for the velocity-vorticity formulation of incom- 
pressible and subsonic viscous flows. A finite element implementation of the wall vorticity 
boundary condition has been demonstrated and an accurate method of calculation for the 
pressure has also been shown. No artificial viscosity is needed to stabilize the iteration or smooth 
the solution. The imposition of boundary conditions is improved through the geometric accuracy 
of quadratic elements in approximating curved boundaries in practical applications. 
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